Provided by: SureSuccess.NG

Mathematics 1983-2004

JAMB

Past Questions

Mathematics 1983

1. If M represents the median and D the mode of the measurements 5, 9, 3, 5, 8 then (M,D) is 10 . If x +2 and $x-1$ are factors of the expressions $1 x+$
A. $(6,5)$
B.
$(5,8)$
C.
(5,7)
D.
$(5,5)$
E. $(7,5)$
2. A construction company is owned by two partners X and Y and it is agreed that their profit will be divided in the ratio 4:5. at the end of the year. Y received \#5,000 more than x . what is the total profit of the company for the year?
A. \#20,000.00 B. P' $0 \# 25,000.00$ C. $\# 30,000.00$
D. \#15,000.003 E.\#45,000.00
3. Given a regular hexagon, calculate each interior angle of the hexagon.
A. $\quad 60^{\circ}$
B. $\quad 30^{\circ}$
C. $\quad 120^{0}$
D. $\quad 45^{\circ}$
E. $\quad 135^{0}$
4. Solve the following equations
$4 x-3=3 x+y=2 y+5 x-12$
A. $4 x=5, y=2$
B. $x=2, y=5 C . x=-2, y=-5$
D. $x=5, y=-2$
E. $x=-5, y=-2$
5. If $x=1$ is root of the equation $x 3-2 x^{2}-5 x+6$, find the other roots
A. $\quad-3$ and 2 B. $\quad-2$ and 2 C
3 and -2
D. $\quad 1$ and 3 E. $\quad-3$ and 1
6. P

7. If x is jointly proportional to the cube of y and the fourth power of z. In what ratio is x increased or decreased when y is halved and z is doubled? A.
4:1 increase B. 2:1 increase C. 1:4 decrease
D. 1: 1 no change E. 3: 4 decrease

In the above figure $\mathrm{PQR}=60^{\circ}, \mathrm{QPR}=90^{\circ}, \mathrm{PRS}=90^{\circ}$,
$\mathrm{RPS}=45^{\circ}, \mathrm{QR}=8 \mathrm{~cm}$. Determine PS
A. $\quad 2 \mathrm{~V} 3 \mathrm{~cm}$ B. $\quad 4^{\prime} / 6 \mathrm{~cm} \mathrm{C} .216 \mathrm{~cm}$
D. $\quad 8 \mathrm{~V} 6 \mathrm{~cm}$ E. $\quad 8 \mathrm{~cm}$
8. Given that $\cos \mathrm{z}=\mathrm{L}$, where z is an acute angle find an expression for $\frac{C o+Z-\operatorname{cosec} Z}{\sec Z+\tan z}$
A. $1-\mathrm{L}$
B. $\mathrm{L}^{2}-\sim 1-\mathrm{L}^{2}$
C. $-\mathrm{L}-\sim 1-\mathrm{L}$
$1+\mathrm{L}$
$\mathrm{L} 2+\mathrm{L}-1$
$(\mathrm{C} 1+\mathrm{L})+\mathrm{li}-\mathrm{L}^{2}$
D. $\sim \mathrm{L}-1$.
E. $\mathrm{L}-\left(\mathrm{L}^{2}-1\right)$
$\left(\mathrm{L} 1+\mathrm{L}^{2}\right)+\mathrm{l} 1 \mathrm{~L}^{2}$
$1+\sim 1-L^{2}+\sim 1-L_{2}$
$2 \mathrm{kx}^{2}+24$, find the values of 1 and k
A. $1=-6, k=-9$ B. $l=-2, k=1$
C. $1=-2, k=-1$
D. $1=0, k=1 \quad$ E. $1=6, k=0$

11 Make T the subject of the equation

$$
\frac{\mathrm{av}}{1-\mathrm{V}}=3 \frac{2 \mathrm{~V}+\mathrm{T}}{\mathrm{a} 2 \mathrm{~T}}
$$

12

A. $3 \mathrm{av} /(1-\mathrm{v})$
B. $2 v(1-v)^{2}-a^{2} v^{2} / 2 a^{2} v^{2}-(1-V)^{2}$
C. $2 v(1-v)^{2}+a^{3} v^{2} / 2 a^{2} v^{2}+(1-v)^{2}$
D. $2 v(1-v)^{2}-a^{4} v^{3} / 2 a^{3} v^{3}-(1-v)^{3}$
E. $2 v(1-v)^{3}-a^{4} v^{3} / 2 a^{3} v^{3}+(1-v)^{3}$

In a class of 60 pupils, the statistical distribution of the number of pupils offering Biology, History, French, Geography and Additional Mathematics is as shown in the pie chart above. How many pupils offer Additional Mathematics?
A. 15
B.
C. 18
D.
E 28

B \quad The value of $(0.303)^{3}-(0.02)^{3}$ is
A. 0.019
B. 0.0019
C. 0.00019
D. 0.000019
E. 0.000035
14. y varies partly as the square of x and y partly as the inverse of the square root of x. write down the expression for y if $\mathrm{y}=2$ when $\mathrm{x}=1$ and $\mathrm{y}=6$ when $\mathrm{x}=$ 4
A. $\mathrm{y}=\frac{10 \mathrm{x}^{2}}{31}+\frac{52}{\mathrm{I}}$
B. $y=x^{2}+1$
C. $y=x^{2}+1$ D. $y=x^{2}+1$
E. $y=\underline{10}\left(x^{2}+1\right)$
$x \quad 3131 \square x$ 31(1 x)
15. Simplify $(x-7) /\left(x^{2}-9\right)\left(x^{2}-3 x\right) /\left(x^{2}-49\right)$
A. $x(x-3)(x+7)$
B. $(x+3)(x+7) / x$
C. $\mathrm{x} /(\mathrm{x}-3)(\mathrm{x}-$
7)
D. $x /(x+3)(x+7)$ E. $x /(x+4)(x+7)$
16. The lengths of the sides of a right-angled triangle at (3 x $+1) \mathrm{cm},(3 \mathrm{x}-1) \mathrm{cm}$ and x cm .
A. 2
B.
6
D. 12
E. 0
17. The scores of a set of a final year students in the first semester examination in a paper are $41,29,55,21,47,70,70,40,43,56,73,23,50,50$. find themedian
9. If $0.0000152 \times 0.00042=\mathrm{Ax} \mathrm{l} 0^{\text {® }}$, where $1 £ A<10$, find A and B.
A. $\mathrm{A}=9, \mathrm{~B}=6.38$ B. $\mathrm{A}=6.38, \mathrm{~B}=-9 \mathrm{C} \cdot \mathrm{A}=6.38, \mathrm{~B}=9$
D. $A=6.38, B=-1 \quad$ E. $A=6.38, B=1$
of the scores.
A. $\quad 47$ B. $48 / 2$ C. 50
D. 48 E 49

Which of the following equations represents the above graph?
A. $y=1+2 x+3 x^{2}$ B. $y=1-2 x+3 x^{2}$ C. $y=1+2 x 3 x^{2}$
D. $y=1-2 x-3 x^{2}$ E. $y=3 x^{2}+2 x-1$

The above figure FGHK is a rhombus. What is the value of the angle x ?
A. $\quad-28,7 \quad$ B. $\quad 6,-28 \mathrm{C}$.
E. 3,2
25. Find the missing value in the following table.

\mathbf{x}	-2	-1	$\mathbf{0}$	1	2	3
$\mathbf{y}=\mathbf{x}^{30}-\mathrm{x}+3$		3	3	3	\mathbf{y}	27

A. -3
B. 3
C. $\quad-9$
D. $\quad 13$
E. $\quad 9$

21. Find x if $(x \text { base } 4)_{2}=1001000$
A. 6
B. $12 \quad \mathrm{C}$
C. 100
D. 210
E $\quad 110$
22. Simplify $\log _{10} a^{1 / 2}+1 / 4 \log _{10} a-1 / 12 \log _{10} a^{7}$
A. 1
B. $\quad 7 / \log _{10} a$
C.
D. 10
E. a
23. If w varies inversely as V and u varies directly as w^{3}, find the relationship between u and V given that $\mathrm{u}=1$, when $\mathrm{V}=2$
A. $u=8 V^{3} B$. $\quad u=d V C$. $\quad V=8 / u^{2}$
D. $\quad V=8 u^{2}$ E. $\quad U=8 / v^{3}$

PQRS is a desk of dimensions 2 mx 0.8 m which is inclined at 300 to the horizontal. Find the inclination of the diagonal PR to the horizontal.
A. $\quad 23^{0} 35^{\prime} \mathrm{B}$
30°
C. $\quad 15^{\circ} 36^{\prime}$
D. $\quad 10^{\circ} \quad$ E. $10^{\circ} 42^{\prime}$
27. Find the angle of the sectors representing each item in a pie chart of the following data. $6,10,14,16,26$
A. $15^{0}, 25^{0} 35^{0} 40^{\circ} 65^{0}$
B. $60^{\circ}, 100^{\circ} 140^{\circ} 160^{\circ} 260^{\circ}$
C. $6^{0}, 10^{\circ} 14^{0} 16^{0} 26^{0}$
D. $30^{\circ}, 50^{\circ} 70^{\circ} 80^{\circ} 130^{\circ}$
E. None of the above

28 The scores of 16 students in a Mathematics test are 65,65,55,60,60,65,60,70,75,70,65,70,60,65,65,70 What is the sum of the median and modal scores?
A. 125
B. $\quad 130$
C.
140
D. 150
E. $\quad 137.5$

The letters of the word MATRICULATION are cut and put into a box. One of the letter is drawn at random from the box. Find the probability of drawing a vowel.
A. $\quad 2 / 13$
B. $5 / 13$
C. $6 / 13$
D. $8 / 13$
E. $\quad 4 / 13$
30. Correct each of the number 59.81789 and 0.0746829 to three significant figures and multiply them, giving your answer to three significant figures.
A. 4.46
B. $\quad 4.48$
C. $\quad 4.47$
D. 4.49
E $\quad 4.50$
31. If a rod of length 250 cm is measured as 255 cm longer in error, what is the percentage error in measurement?
A. 55
B.
10
D. 4
E. 2
C. 5
32. If $(2 / 3) m(3 / 4) n=256 / 729$, find thevalues of m and n
A. $m=4, n=2 \quad$ B. $m=-4, n=-2$ C. $m=-4, n=2$
D. $m=4, n=-2$ E. $m=-2, n=4$
24. Solve the simultaneous equations for x $\mathrm{x} 2+\mathrm{y}-8=0$ $y+5 x-2=0$

Without using tables find the numerical value of $\log _{7} 49$ $+\log _{7}(1 / 7)$
A. $\quad 1$
B. 2
C. 3
D. 7
E. $\quad 0$
34. Factorize completely $81 a^{4}-16 b^{4}$

At1. Ih the figure below find PRQ
3
a
$+$
2
b
)
$2 \quad \sqrt{ }$ A. $\quad 661 /{ }^{0} \mathrm{~B} . \quad 621 /{ }^{0} \mathrm{C} . \quad 125^{0}$
a
$-3 b)\left(9 a^{2}+4 b^{2}\right)$
B. $(3 a-2 b)(2 a-3 b)\left(4 a^{2}-9 b^{2}\right)$
C. $\quad(3 a-2 b)(3 a-2 b)\left(9 a^{2}+4 b^{2}\right)$
D. $(3 a-2 b)(2 a-3 b)\left(9 a^{2}+4 b^{2}\right)$
E. $\quad(3 a-2 b)(2 a-3 b)\left(9 a^{2}-4 b^{2}\right)$
35. One interior angle of a convex hexagon is 170° and each of the remaining interior angles is equal to x^{0}. find x
A. $\quad 120^{\circ}$
B. $\quad 110^{\circ} \mathrm{C}$.
105^{0}
D. $\quad 102^{0} \mathrm{E}$
100^{0}
D. $\quad 105^{\circ}$
$\mathrm{E} \quad 65^{0}$

42
Simplify $27 a^{9} / 8$
A. $\quad 9 a^{2} / 2$
B. $\quad 9 a^{3} / 2$
C. $2 / 3 a^{2}$
D. $\quad 2 / 3 a^{2}$
E. $\quad 3 a^{3} / 2$
37. A ship H leaves a port P and sails 30 km due South. Then it sails 60 km due west. What is the bearing of H from P ?
A. $\quad 26^{0} 34^{\prime} \mathrm{B}$
$243^{\circ} 26^{\prime} \mathrm{C}$. $116^{\circ} 34^{\prime}$
D. $\quad 63^{\circ} 26^{\prime}$ E. $\quad 240^{\circ}$
38. In a sample survey of a university community the following table shows the percentage distribution of the number of members per household.

No of members per household	1	2	3	4	5	6	78
	Total						
Number of households	3	12	15	28	21	10	74

A. 4
B. 3
C. 5
D. $\quad 4.5$
E None
39. On a square paper of length 2.524375 cm is inscribed a square diagram of length 0.524375 . find the area of the paper no covered by the diagram correct to 3 significant figures.
A. $\quad 6.00 \mathrm{~cm}^{2} \mathrm{~B}$
$6.10 \mathrm{~cm}^{2} \mathrm{C}$.
$6 . \mathrm{cm}^{2}$
D. $\quad 6.09 \mathrm{~cm}^{2} \mathrm{E} . \quad 4.00 \mathrm{~cm}^{2}$
40. If $f(X)=1+\underline{x-1} x^{2}$ find $f(1-x)$
C. $-1 / x-1 /(x-2)$
D. $-1 / x+1 /\left(x^{2}-1\right)$

The farm yields of four crops on a piece of land in Ondo are represented on the pie chart above. What is the angle of the sector occupied by Okro in the chart?
 In the figure above, PQR is a straight line. Find the values of x and y
A. $\quad x=22.5^{\circ}$ and $y=33.75^{\circ}$
B. $\quad x=15^{\circ}$ and $y=52.5^{\circ}$
C. $\quad x=22.5^{0}$ and $y=45.0^{\circ}$
D. $\quad x=56.25^{0}$ and $y=11.5^{0}$
E. $\quad x=18 .{ }^{\circ}$ and $y=56.5^{\circ}$

PQR is the diameter of a semicircle RSP with centre at Q and radius of length 3.5 cmc . if $\mathrm{QPT}=\mathrm{QRT}=60^{\circ}$. Find the perimeter of the figure (PTRS $\mathrm{p}=22 / 7$)
s

T

A. $\quad 25 \mathrm{~cm}$
B. 18 ccm C .
36 cm
D. 29 cm
E $\quad 255 \mathrm{~cm}$
43.

44.

46. In a triangle $\mathrm{PQR}, \mathrm{QR}=3 \mathrm{~cm}, \mathrm{PR}=3 \mathrm{~cm}, \mathrm{PQ}=3 \mathrm{~cm}$ and $\mathrm{PQR}=30^{\circ}$. find angles P and R
A. $\quad P=60^{\circ}$ and $R=90^{\circ}$
B. $\quad P=30^{\circ}$ and $R=120^{\circ}$
C. $\quad P=90^{\circ}$ and $R=60^{\circ}$
D. $\quad P=60^{\circ}$ and $R=60^{\circ}$

| | $\mathbf{1 3 0}^{\mathbf{0}} \quad \mathbf{1 0 0}^{\mathbf{0}}$ |
| :---: | :---: | :---: |
| E. \quad | \mathbf{S} |
| P | $=45^{\circ}$ and $\mathrm{R}=105^{\circ}$ |

47.

In the above diagram if $\mathrm{PS}=\mathrm{SR}$ and $\mathrm{PQ} / / \mathrm{SR}$. what is the size of PQR ?
A. $\quad 25^{\circ}$
B. $\quad 50^{\circ}$
C. $\quad 55^{0}$
D. $\quad 65^{\circ}$
E $\quad 75^{0}$
48. Find the mean of the following 24.57,25.63,25.32,26.01,25.77
A. $\quad 25.12 \quad$ B. $\quad 25.30$
C. $\quad 25.26$
D. $\quad 25.50 \mathrm{q}$ E. $\quad 25.73$

$$
5-1_{1 / 2}
$$

A. $1 / 7 \mathrm{~B}$. 7
C. $1 / 3$
D. 3 E. $1 / 5$

Mathematics 1984

1. Simplify $(2 / 3-1 / 5)-1 / 3$ of $2 / 5$
2. If $263+441=714$, what number base has been used?
A. 12
B.
11
C.
10
D. $\quad 9 \quad \mathrm{E} \quad 8$
3.

$0.00014323 / 1.940000=\mathrm{k} \mathrm{x} 10^{\mathrm{n}}$ where $1 £ \mathrm{k}<10$ and n is a whole number. The values of K and are
A. $\quad 7.381$ and -11
B__ 2.34 and 10
C. $\quad 3.87$ and 2
D
E.

4. $\quad \mathrm{P}$ sold his bicycle to Q at a profit of 10%. Q sold it to R for \#209 at a loss of 5\%. How much did the bicycle cost P?
49.

T
so
$2 x^{0}$
P

	$3 b$	B.	15	C.	24_{0}
D.	12^{0}	E	60^{0}		

A man drove for 4 hours at a certain speed, he then doubled his speed and drove for another 3 hours. Altogether he covered 600 km . At what speed did he drive for the last 3 hours?
A. $120 \mathrm{~km} / \mathrm{hr}$
B. $60 \mathrm{~km} / \mathrm{hr}$
C. $600 / 7 \mathrm{~km} / \mathrm{hr}$
D. $50 \mathrm{~km} / \mathrm{hr}$
E. $100 \mathrm{~km} / \mathrm{hr}$.
6. A man invested a total of $\# 50,000$ in two companies. If these companies pay dividend of 6% and 8% respectively, how much did he invest at 8% if the total yield is \#3.700?

A. \#15,000 B. \#29,600 C. \#21,400		
D.	$\# 27,800$ E.	$\# 35,000$

7. Thirty boys and x girls sat for a test. The mean of the boys' scores and that of the girls were respectively 6 and 8 . find x if the total score was 468.
A. $\quad 38$
B. 24
D. 22
E
41
8. The cost of production of an article is made up as follows Labour \#70

Power \#15

Materials \#30
A. \#200
B. \#196
C. \#180
D. \#205
E. \#150
5. If the price of oranges was raised by $1 / 2 \mathrm{k}$ per orange, the number of oranges customer can buy for \#2.40 will
be less by 16 . What is the present price of an orange?
A. $2^{1 / k}$
B. $\quad 3^{1} / \mathrm{k}$
C. $\quad 5 / / \mathrm{k}$

Miscellaneous
\#5
Find the angle of the sector representing labour in a pie chart.
A. $\quad 210^{\circ}$
B. $\quad 105^{0}$
C. $\quad 175^{0}$
D. $\quad 150^{\circ}$
E. $\quad 90^{\circ}$

Bola chooses at random a number between 1 and 300 .
What is the probability that the number is divisible by
D. $\quad 20 \mathrm{k} \quad$ E. $\quad 21 / \mathrm{k}$

4!
A.
n $\quad 4 / 20 \cap \mathrm{~F} \quad 1 / 200$

10 Find without using logarithm tables, the value of

11 A variable point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ traces a graph in a two dimensional plane. $(0,-3)$ is one position of P. If x increases by 1 unit, y increases by 4 units. The equation of the graph is
A. $\quad-3=y+4 / x+1$ B.
$4 y=-3+x$
$\begin{array}{lr}\text { C. } & \begin{array}{r}y / x=-3 / 4 \\ \text { E }\end{array} \quad 4=x+3\end{array}$
D. $y+3=4 x$

1 A trader in a country where their currency 'MONT' (M) is in base five bought ${ }_{103(5)}$ oranges at m14(5) each. If he sold the oranges at ${ }_{\mathrm{M} 24(5)}$ each, what will be his gain?
$\begin{array}{lllcc}\text { A } & \text { M103 }_{(5)} \text { B. } & \text { M1030 }_{(5)} \text { C. } & \text { M102 } & \text { (5) }\end{array}$
$13 \quad$ Katıonalıze
(5"/5-7l5)(N17-"/5
A. $\quad-2 \mathrm{q} 35$
B. 4D7-6D5 C
~ 35
14. Simplify

$$
\begin{gathered}
3_{n}-3_{n-1} \\
3^{n}-27 \times 3_{n-1}
\end{gathered}
$$

A. 1 B. 0
C. $1 / 27$
D. $\quad 3^{n}-3 n-1$ E. $\quad 2 / 27$
15. p varies directly as the square of q an inversely as r. if $\mathrm{p}=36$, when $\mathrm{q}=3$ and $\mathrm{r}=\mathrm{p}$, find p when $\mathrm{q}=5$ and $\mathrm{r}=2$
A. $\quad 72$
B.
100
C. 90
D.
200
E
125
16. Factorise $6 x^{2}-14 x-12$
A. $\quad 2(x+3)(3 x-2) B$.
$6(x-2)(x+1)$
C. $\quad 2(x-3)(3 x+2) D$.
$6(x+2)(x-1)$
E. $\quad(3 x+4)(2 x+3)$
17. A straight line $y=m x$ meets the curve $y=x^{2}-12 x+40$ in two distinct points. If one of them is $(5,5)$, find the other
A. $(5,6)$
B. $(8,8)$
C. $(8,5)$
D.
$(7,7)$
E. $(7,5)$

18 The table below is drawn for a graph $y=x^{2}-3 x+1$

x	-3	-2	-1	0	1	2

From $\mathrm{x}=-2$ to $\mathrm{x}=1$, the graph crosses the x -axis in the range(s)
A. $-1<x<0$ and $0<x<1$
B. $\quad-2<x<-1$ and $0<x<1$
C. $\quad-2<x<-1$ and $0<x<1$
D. $\quad 0<x<1$ E. $\quad 1<x<2$
19. In a racing competition. Musa covered a distance of 5 xkm in the first hour and $(x+10) \mathrm{km}$ in the next hour. He was second to Ngozi who covered a total distance of 118 km in the two hours. Which of the following inequalities is correct?
A. $0<-x<15$
B. $\quad-3<x<3$
C. $\quad 15<x<18$
D. $0<x<15$
E. $\quad 0<x<18$
20.
$2 x+3 y=1$ and $y=x-2 y=11$, find $(x+y)$
$\begin{array}{llllll}\text { A. } & 5 & \text { B. } & -3 & \text { C. } & 8\end{array}$
D. 2 E 2
21.

Tunde and Shola can do a piece of work in 18days.
Tunde can do it alone in x days, whilst Shola takes 15 days longer to do it alone. Which of the following equations is satisfied by x ?

$$
\begin{array}{llll}
\text { A. } & x^{2}-5 x-18=0 \text { B. } & x^{2}-20 x+360=0 \\
\text { C } & x^{2}-21 x-270=0 & \text { D. } \quad 2 x^{2}+42 x-190=0 \\
\text { E } & 3 x^{2}-31 x+150=0 & &
\end{array}
$$

22. If fx$)=2(\mathrm{x}-3) 2+3(\mathrm{x}-3)-4$ and $\mathrm{g}(\mathrm{y})=\mathrm{F} / 5+\mathrm{y}$, find $\mathrm{g}(\mathrm{f}(3))$ and $g\{f(4)\}$
A. 3 and 4
B. $\quad-3$ and 4
C. $\quad-3$ and -4
D. 3 and -4
F. $\quad 0$ and ~ 5
23. The quadratic equation whose roots are $1 \sqrt{13}$ and $1+$

$\sqrt{3}$ is		
A.	$x^{2}+(1-413) x+1+13=0$	
B.	$x^{2}+(1-413) x+1-\sim 13=0$	
C.	$x^{2}+2 x+12=0$	D. $x^{2}-2 x+12=0$
E	$x^{2}-2 x-12=0$	

24. Find a factor which is common to all three binomial expressions
$4 a 2-9 b 2, a^{3}+27 b^{3},(4 a+6 b)^{2}$
A. $4 a+6 b$
B. $\quad 4 a-6 b$
C. $2 a+3 b$
D. $2 a-3 b$
E. none

What is the volume of the regular three dimensional figure drawn above?
A. $\quad 160 \mathrm{~cm}^{3} \mathrm{~B}$.
D. $\quad 120 \mathrm{~cm}^{3} \mathrm{E}$.
$48 \mathrm{~cm}^{3} \mathrm{C} . \quad 96 \mathrm{~cm}^{3}$
26. If $(x-2)$ and $(x+1)$ are factors of the expression $x^{3}+\mathrm{px}^{2}$ $+q x+1$, what is the sum of p and q ?
A. $\quad 0$
B. $-3 \quad \mathrm{C}$.
D. $\quad-17 / 3$ E. $-2 / 3$
27. A cone is formed by bending a sector of a circle having an angle of 210°. Find the radius of the base of the cone if the diameter of the circle is base of the cone if the

diameter of the circle is 12 cm
A. $\quad 7.00 \mathrm{~cm}$ B. $1.75 \mathrm{~cm} \mathrm{C}$.
D. $3 i 0 \mathrm{~cm}$ E. $20 ̈ 21 \mathrm{~cm}$

Using $\hat{X} \mathrm{YZ}$ in the figure above find XYZ
A. $\quad 29^{0}$
B. $\quad 31^{\circ} 20^{\prime}$
C. $\quad 31^{0}$
D. $\quad 31^{0} 18^{\prime} \mathrm{E} . \quad 59^{0}$
29. The sides of a triangle are $(x+4) \mathrm{cm}, x \mathrm{~cm}$ and $(x-4) \mathrm{cm}$ respectively. If the cosine of the largest angle is $1 / 5$, find the value of x
A. $\quad 24 \mathrm{~cm}$
B. 20 cm
C. 28 cm
D. $88 / 7 \mathrm{ccm}$ E. 0 cm
30. If $\mathrm{a}=2 \mathrm{x} / 1-\mathrm{x}$ and $\mathrm{b}=1+\mathrm{x} / 1-\mathrm{x}$
then $a^{2}-b^{2}$ in the simplest form is

$$
(\quad x+1)
$$

A. $\quad\left(x^{2}-1\right)(x+2)$
B.
C. $\quad x_{2}-(x+2)$
D.
32. $\quad \mathbf{Q}$
A.
D. V

Find the area of the shaded portion of the semi - circular
$\begin{array}{llll} & & \\ \text { A. } & r^{2} / 4(4 p-3 \$) & \text { B. } & r^{2} / 4(2 p+3 \sqrt{3}) \\ \text { C. } & 1 / 2 r^{2} p & \text { D. } & 1 / 8 r \downarrow \\ \text { E. } & r^{2} / 8(4 p+3 / 3) & & \end{array}$
$\begin{array}{llll} & & \\ \text { A. } & r^{2} / 4(4 p-3 \$) & \text { B. } & r^{2} / 4(2 p+3 \sqrt{3}) \\ \text { C. } & 1 / 2 r^{2} p & \text { D. } & 1 / 8 r \downarrow \\ \text { E. } & r^{2} / 8(4 p+3 / 3) & & \end{array}$
$\begin{array}{llll} & & \\ \text { A. } & r^{2} / 4(4 p-3 \$) & \text { B. } & r^{2} / 4(2 p+3 \sqrt{3}) \\ \text { C. } & 1 / 2 r^{2} p & \text { D. } & 1 / 8 r \downarrow \\ \text { E. } & r^{2} / 8(4 p+3 / 3) & & \end{array}$
$\begin{array}{llll} & & \\ \text { A. } & r^{2} / 4(4 p-3 \$) & \text { B. } & r^{2} / 4(2 p+3 \sqrt{3}) \\ \text { C. } & 1 / 2 r^{2} p & \text { D. } & 1 / 8 r \downarrow \\ \text { E. } & r^{2} / 8(4 p+3 / 3) & & \end{array}$
$\begin{array}{llll} & & \\ \text { A. } & r^{2} / 4(4 p-3 \$) & \text { B. } & r^{2} / 4(2 p+3 \sqrt{3}) \\ \text { C. } & 1 / 2 r^{2} p & \text { D. } & 1 / 8 r \downarrow \\ \text { E. } & r^{2} / 8(4 p+3 / 3) & & \end{array}$
y
\mathbf{R}
In the figure above QRS is a line, $\mathrm{PSQ}=35^{\circ} \mathrm{SPR}=30^{\circ}$ and O is the centre of the circle find OQP
A. $\quad 35^{0}$
B.
30°
C. $\quad 130^{0}$
A. $3 x+1 /(x-1) \quad$ B. $3 x^{2}-1 /(x-1)^{2}$
C. $3 x^{2}+1 /(1-x)^{2}$
C. $1 / q+1$
E. $5 x^{2}-2 x-1 /(1-x)^{2}$
E $\quad 1 / 1-q_{31}$
D. $\quad 1+\mathrm{q}$

$$
\text { Simplifty }(1+\underline{(\underline{x}-1)})(x+2)
$$

Scores (n)	Frequency (f)
3	30
4	32
5	30
6	35
7	20

$\mathrm{x} 2(\mathrm{x}+2) / \mathrm{x}+1$
$2 x(x+2) \quad$ 37. The cumulative frequency functio
E.

$$
2 x(x+2) / x+1
$$

In the figure above PQRSTW is a regular hexagon. QS intersects RT at V. calculate TVS.
A.
60°
B. $\quad 90^{\circ}$
C.
120°

Provided by: SureSuccess.NG
D. $\quad 30^{0}$
E. $\quad 80^{0}$
20°
33. Find the integral values of x which satisfy the Q S inequalities $3<2.5 x<12$
A. $-2,-1$
B. $\quad 2,2$
C. $\quad 1,0$
D. $\quad 0,1$
E. $\quad 1,2$
\mathbf{y}
\mathbf{R}
39. A right circular cone has a base radius rcm and a vertical $2 y^{0}$. the height of the cone is
A. $\quad r \tan y^{\circ} \mathrm{cm}$
B. $\quad r \sin y^{0} \mathrm{~cm}$
C. $\quad r \cot y^{\circ} \mathrm{cm}$
D. $\quad r \cos y^{0} \mathrm{~cm}$
E. $\quad \mathrm{r} \operatorname{cosec} \mathrm{y}^{0} \mathrm{~cm}$
40. Two fair dice are rolled. What is the probability that both show up the same number of point?
A. $\quad 1 / 36$
B. $7 / 36$
C. $1 / 2$
D. $1 / 3$
E. $1 / 6$

The bar chart above shows the mark distribution in a class test. Find the number of students in the class.
A. $\quad 9$
B. $\quad 2$
C. 60
D. 30
E. 34
A. $\quad 1,1$
B.
0,-4
C.
4,9
D. 0,0
E. 0,4
43. If $\sin q=x / y$ and $0^{0}<q<90^{\circ}$
then find $1 / \tan q$
A. $\quad x / \sim\left(y^{2}\right.$
X2)
B. $\quad \mathrm{x} / \mathrm{y}$
C. $\frac{l y^{2} n^{2}-x^{2}}{l^{2} x^{2}}$
D. $\quad\left(, / y^{2}-x^{2}\right) /\left(j y^{2}-x 2\right)$
E. $\quad, \mid \overline{y^{2}}-\mathrm{x} 2 / \mathrm{y}$

In the figure above $\mathrm{TSP}=\mathrm{PRQ}, \mathrm{QR}=8 \mathrm{~cm} . \mathrm{PR}=6 \mathrm{~cm}$ and $\mathrm{ST}=12 \mathrm{~cm}$. Find the length SP
A. $\quad 4 \mathrm{~cm} \quad$ B. 16 cm C . 9 cm
D. 14
E. Impossible insufficient data

In the figure above, O is the centre of circle PQRS and $\mathrm{PS} / / \mathrm{RT}$. If $\mathrm{PRT}=135^{\circ}$, then PSQ is

${ }^{4521 /{ }^{\circ}}$
C. $\quad 90^{\circ}$
47.

48

XYZ is a triangle and XW is perpendicular to YZ at W .
if $X Z=5 \mathrm{~cm}$ and $W Z=4 \mathrm{~cm}$, calculate $X Y$.
A. $5^{\prime} / 3 \mathrm{~cm} \mathrm{~B}$.
$3^{\prime} \mathrm{s} / 5 \mathrm{~cm}$ C. $\quad 3 O ̈ 3 \mathrm{~cm}$
D. 5 cm
E. 6 cm

Measurements of the diameters in centimeters of 20 copper spheres are distributed as shown below

Class boundary in cm	frequency
$3.35-3.45$	3
$3.45-3.55$	6
$3.55-3.65$	7
$3.65-3.75$	4

What is the mean diameter of the copper sphere?

A.	3.40 cm B.	3.58 cm C.	3.56 cm
D.	3.62 cm E.	3.63 cm	

Use the instruction below to answer question49 and 50 joined to Q?
A.
D.

49 What is the obtuse angle formed when the point U is
75^{0}
B. $\quad 154^{0}$
C. 120°
105^{0}
E. 125°
5) What is the acute angle formed when the point V joined to Q ?
A. $\quad 60^{\circ}$
B.
C. $\quad 45^{0}$
D. $\quad 90^{\circ}$
E. $\quad 15^{0}$

Mathematics 1985

1 Arrange the following numbers in ascending order of magnitude $6 / 7,13 / 15,0.865$
A. $\quad 6 / 7<0.865<13 / 15$
B. $\quad 6 / 7<13 / 15<0.865$
C. $\quad 13 / 15<6 / 7<0.865$
D. $\quad 13 / 15<0.865<6 / 7$
E. $\quad 0.865<6 / 7<13 / 15$

2 A sum of money was invested at 8% per annum simple interest. If after 4 years the money amounts to \#330.00, find the amount originally invested.
A. $\# 180.00$
B. \#165.00 C.
\#150.00
D. \#200.00
E. \#250.00
3. I the equation below, solve for x if all the numbers are in

base $2 ?$	$11 / \mathrm{x}=$	$1000((\mathrm{x}+101)$	
A.	101	B.	11
D.	111	E.	10

$\begin{array}{llll}\text { A. } & 11 & \text { B. } & 11 \\ \text { D. } & 111 & \text { E. } & 10\end{array}$

4 List all integers satisfying the inequality
$-2<2 x-6<4$
A. $2,3,4,5$ B. $23,4 \quad$ C 25
D. $3,4,5$ E 4,5

5
Find correct to tow decimal places

	$100+1 / 100+3 / 1000+27 / 10000$		
A.	100.02	B.	1000.02
C.	100.22	D.	100.01
E.	100.51		

6. Simplify $1 / 2+1$

$$
\begin{gathered}
2+-------- \\
1
\end{gathered}
$$

7. If three number $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are in the ratio $6: 4: 5$ find the value of $(3 q-q) /(4 q+r)$
A. $3 / 2 \mathrm{~B}$.
23
C. 2
D. 3 E .
18
8. Without using tables, evaluate $\log _{2} 4+\log _{4} 2-\log _{25} 5$
A. $\quad 1 / 2$ B. $1 / 5$ C. 0
D. 5 E. 2
9. John gives one third of his money to Janet who has \#105.00. He then finds that his money is reduced to one-fourth of what Janet now has. Find how much money John had at first.
A. $\quad \# 45.00$ B.
\#48.00 C.
\#52.00
D. \#58.00 E. \#60.00
10. Find x if $\log _{9} x=1.5$
A. $\quad 72.0 \quad$ B
27.0 C
C. $\quad 36.0$
D. 3.5 E. 24.5
$11 \quad$ Write h in terms of $\mathrm{a}=\mathrm{b}(1-\mathrm{ch})$
(1-dh)
A $\quad \mathrm{h}=\underline{(\mathrm{a}-\mathrm{b})}$
B. $h=(a+b)$
(ad- bc)
(ad - bc)
C. $\quad h=\frac{(a d-b c)}{(a-b)}$
D. $h=\frac{(1-b)}{(d-b c)}$
E. $\quad h=(b-a)$
($\mathrm{ad}-\mathrm{bc}$)
11.

$221 / 2 \%$ of the Nigerian Naira is equal to $17^{1} / \%$ of a foreign currency M . what is the conversion rate of the M to the Naira?
A. $\quad 1 \mathrm{M}=15 / 5 \mathrm{~N}$
B. $\quad 1 \mathrm{M}=2_{5}^{11} / \mathrm{N}$
C. $\quad 1 \mathrm{M}=18 /{ }_{5} \mathrm{~N}$
D. $\quad 1 \mathrm{M}=381 / \mathrm{N}$
$E 2 p+1=1 M_{h}=384^{3} / 4 N^{2}$

D. $\quad(4,5) \quad$ E. $\quad(3,4)$

Provided by: SureSuccess.NG

\[

\]

13.
14. If $\mathrm{e}^{\mathrm{x}}=1+\mathrm{x}+\mathrm{x}^{2} / 12+\mathrm{x}^{3} / 1 \cdot 2 \cdot 3+$ find $1 / \mathrm{e}^{1 / 2}$
A. $1-x+x^{2}-x^{2}+\ldots$ B. $1+x+x^{2}+x_{2}$
$21232^{4} 3$
$21.2^{2} 2^{3} .3$
C. $1+\mathrm{x}+\mathrm{x}^{2}-\mathrm{x}^{2} \pm$.
D. $1-x+\frac{x^{2}}{21.2^{2}}-\frac{x^{2}}{2^{3} \cdot 3}+$
E. $1+\underline{x}^{3}+x^{3}-x^{4}+$
1.212 .412 .63
15. $(4|3+4| 2)(4|3-4| 2)(3 \mid+\sim 2)$ is equal to
A. $\quad 0$ B. $4 \square 3+4 \square 2$
C. $\quad(4|2-4| 3)(|3+| 2)$
D. $\sim 3+\sim 2$ E. 1
16. In a restaurant, the cost of providing a particular type of food is partly constant and partly inversely proportional to the number of people. If the cost per head for 100 people is 30 k and the cost for 40 people is 60 k , find the cost for 50 people
A. $\quad 15 \mathrm{k}$
B. 45 k
C. 20 k
D. 50 k
E. 40k
17. The factors of $9-\left(x^{2}-3 x-1\right)^{2}$ are
A. $\quad-(x-4)(x+1)(x-1)(x-2)$
B. $\quad(x-4)(x-1)(x-1)(x+2)$
C. $\quad-(x-2)(x+1)(x+2)(x+4)$
D. $\quad(x-4)(x-3)(x-2)(x+1)$
E. $\quad(x-2)(x+2)(x-1)(x+1)$
18. If $3^{2} y-6(3 y)=27$ find y
A. 3
B. 1
C. 2
D. 3
E $\quad 1$
19. Factorize $a b x^{2}+8 y-4 b x-2 a x y$
A. $(a x-4)(b x-2 y) B$.
$(\mathrm{ax}+\mathrm{b})(\mathrm{x}-8 \mathrm{y})$
C. $\quad(a x-2 y)(b y-4) D . \quad(a b x-4)(x-2 y)$
E. $\quad(b x-4)(a x-2 y)$

20 At what real value of x do the curves whose equations are $y=x^{3}+x$ and $y=x^{2}+1$ intersect?
A. $\quad-2$
B. 2
C.
C. $\quad \mathrm{x}=2^{1},{ }^{2} \mathrm{y}=3$
D. $\mathrm{x}=3{ }^{1 / 2}, \mathrm{y}=2 \stackrel{3}{4}{ }_{5}$
E. $\quad \mathrm{x}=2^{1 / 4}, \mathrm{y}=2^{1 /}$
25. If $f(x-2)=4 x^{2}+x+7$ find $f(1)$

A.	12 B.	27	C.	7
D.	46 E.	17		

26. In $\mathrm{DXYZ}, \mathrm{XY}=13 \mathrm{~cm}, \mathrm{YZ}=9 \mathrm{~cm}, \mathrm{XZ}=11 \mathrm{~cm}$ and $\mathrm{XYZ}=$ q^{0}. find $\cos q_{0}$
A . $4 / 39$
B . $43 / 39$
C. $209 / 286$
D. $1 / 6$
E. $43 / 78$
27. Find the missing value in the table below

\mathbf{x}	-2	-1	0	1	2	3
$\mathbf{y}=\mathbf{x}^{20}-x+3$		3	3	3	9	27

A.	-32	B.	-14	C.	40
D.	22	E.	37		

28. Find the number of goals scored by a football team in 20matches is shown below

| No of onals | 0 | 1 | 2 | 3 | 4 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No . of matches | 3 | 5 | 7 | 4 | 1 | 0 |

What are the values of the mean and the mode respectively?
A. $(1.75,5)$
B. $(1.75,2)$
C. $(1.75,1)$
D. $(2,2)$
E. $\quad(2,1)$
29. If the hypotenuse of a right angle isosceles triangle is 2 , what is the length of each of the other sides?
A. $\quad 12$ B. $1 / 12 \mathrm{C}$. $2 \square 2$
D. 1 E. -1

2

30. If two fair coins are tossed, what is the probability of getting at least one head?
A. $\quad A$
B. $\quad \mathbb{L}$
C. 1
D. $\quad 2 \beta$
E. $3 / 4$
31. The ratio of the length of two similar rectangular blocks is $2: 3$, if the volume of the larger block is $351 \mathrm{~cm}^{3}$, then the volume of the other block is
A. $\quad 234.00 \mathrm{~cm}^{3}$
B. $\quad 526.50 \mathrm{~cm}^{3}$
C. $\quad 166.00 \mathrm{~cm}^{3}$
D. $\quad 729.75 \mathrm{~cm}^{3}$
E. $\quad 104.00 \mathrm{~cm}^{3}$

32 The bearing of bird on a tree from a hunter on the ground is $\mathrm{N} 72^{\circ} \mathrm{E}$. what is the bearing of the hunter from the bird?
A. $\quad \mathrm{S} 18^{\circ} \mathrm{W}$
B. $\quad \mathrm{S} 72^{0} \mathrm{~W}$
$\begin{array}{ll}\mathrm{C} & \mathrm{S} 722^{\circ} \mathrm{Eq} \\ \mathrm{E} & \mathrm{S} 270 \mathrm{~W}\end{array}$
D. $\quad \mathrm{S} 27^{0} \mathrm{E}$

